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1. Introduction

The central issue in approximating a partial differential equation by

a finite difference equation is the degree to which the difference equation

solution agrees with the solution to the differential equation. This

agreement can be considered in both its quantitative (e.g., relative

error), or qualitative aspects, e.g., behavior of transients, propagation

of fronts, etc.

In this paper we investigate some of these aspects for a prototype

dispersive wave (hyperbolic) equation. This type of problem is

especially important in numerical weather prediction, since for "fast"

time scales, the meteorological primitive equations are dispersive. We

consider both the differential and quasi-discrete case, where second order

centered spatial differences are used. In both cases solutions are

obtained by Fourier transform methods, with steady state solutions

extracted directly from the transforms and inverted in closed form, and

the asymptotic behavior of the transients determined by the method of

stationary phase.

Our analysis shows that discretization of spatial derivatives has

two major effects:

(1) The initial conditions of the differential problem contribute

to the steady state solution in a manner that decays exponentially with

distance. This qualitative effect is retained in the quasi-discrete

formulation, but the rate of decay is decreased.

(2) The discretization introduces additional transients beyond

those encountered in the differential case. These new transients are at



least of the same magnitude of decay as the differential transients, and,

in some instances, they are more persistent.



2. The Differential One-Dimensional Adjustment Process

One of the simplest models of dispersive waves is the linearized one-

dimensional shallow water equations with no mean flow, in an infinite

region:

|»-* + g *.o (i)

|* + fu - (2)

where u is the perturbation velocity in the x direction, v is the

perturbation velocity normal to the x direction, H and h are the mean

and perturbed heights of the free surface, respectively, and g > and

f > are gravitational and Coriolis parameters, respectively. This model

is especially important in the study of the meteorological problem of

geostrophic adjustment, and has been studied in some detail by Rossby [1],

Cahn [2], Blumen [3] and Winninghoff [4]. In their papers, the model has

been studied by eliminating between the equations to arrive at:

2 2
9 u

, c 2 9 u A , /N—- + f u - gH —* = , (4)

3t 3x

then solving (4) by a Fourier Transform approach. After solving (4),

solutions for h and v are obtained by substitution into (2) and (3),

although closed- form solutions are not produced in some of the papers.

Note the dispersive character of (4) is clearly seen by assuming a wave

solution:



t . N . i(kx-vt)
u(x,t) = A e ,

which leads immediately to:

v
2

= f
2
+ k

2
gH - f

2
(l+A

2
k
2
), X = /gll/f . (5)

We now derive an alternative means of solving (l)-(3) which is

superior in that it does not require elimination, it produces u, v and h

without back substitution, it yields interesting insights into the

transient and steady state behavior of the solutions in the differential

case, and it has an extension in the quasi-discrete case that is quite

illuminating.

We denote Fourier Transforms by a wavy overhead bar, e.g.:

oo

cu(k,t) = u(x, t)e"
ikx

dx , (6)

etc. Then (l)-(3) reduce directly to:

an 'V '"b^ = fv - ikg h , (7)

| = -f 1 , (8)

^ • -tk H S , (9)

together with initial conditions:

o
u(x,u = u(k,0) = u(x,0)e

lkx
dx , (10)



etc. Since (6)- (9) is a coupled set of constant coefficient ordinary

differential equations, it can be solved by the usual process of finding

the eigenvalues and eigenvectors of the coefficient matrix. This leads

straightforwardly to:

'v 2 ivt 3 -ivt
u • — e - — e

v v

~ ., if ivt if -ivt
v = ikg a

1
+ -~2 a_e * a"\e

v v

y . kH ivt kH -ivt
h - f a - ~2 a

2
e ^^

v v

> (11)

where v is given by (5), and the a are picked to satisfy the initial

conditions. Observe that the e and e terms both represent the

transforms of transients in the time domain. Solving the initial

conditions for the a , collecting like terms in (11), and simplifying

yields:

f v ikg h
^/, \ ^ o o
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o v v
sin vt ,

-\ ) k
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v o J22

V V
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v o 2
v
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Q
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f
2

^
2
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Observe that (12) immediately yields by inspection the transform of

the steady state ("balanced") solution:
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These can be immediately inverted by the convolution theorem, and the obser-

vation that

00

J

-|x|/X -ikx
e e dx

2A 2X 2

2 2 21+kT v

to yield:
">

u
s
(x) =

v
s
(x) = v(x,0) +

h
s
(x) = h(x,0)

00

- x-s /A

f 9x
(s,0) - v(s,0) [ ds V(14)

2
2A f
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J

- x-s /A

f 8x
(s,0) - v(s,0) > ds

J

Solving equations (l)-(3) by this approach allows us to easily

observe several elementary results:

(1) Since u (k,0) does not contribute to any of the steady state

solutions, any "imbalance" in u(x,0) does not affect the final balanced

state.

(2) The term in (14)

£ ill
f 3x

(s,0) + v(s,0)> ,



the initial value of the quantity usually referred to as the ageostrophic

wind, can be considered as the measure of "imbalance" in the initial state

that is not dissipated at the final state.

(3) At steady state, the effects of this initial imbalance contribute

most strongly in the immediate neighborhood of the imbalance and die off

exponentially in space away from it.

Observe also that the transient part of (12) can be written:

u (k,t) p u cos
T O

f K ike y
vt + — <v r°- h > sin vt

v ) o f o

^ f % f \ ^
v
T
(k,t) = - - u

Q
sin vt + — -^h

f o
cos vt

£ .. . ikH ^ . t ikHf )^ ikg y
h,-,(k,t) = u sin vt r- <v 7s- h > cos vt
T v o 2 ) o o

Wl5)

Explicit inverses to these transforms are expressible in terms of

(l I 2 2 2 2 Jconvolutions involving J l"~v^ ft - x / . However, a simplified view of

the asymptotic behavior of the transients is possible by using the method

of stationary phase. Let

d(x,t) - v(x,t) -*|| (x,t) .

Then

t^Cx.t) • h f
**• 0)cos vt e dx + hj f*<k.?)rt

ikx
in vt e dk . (16)

Thus, using the method of stationary phase (Appendix 1), we can show, for

fixed x as t -* °° :
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where <(>, and tk are slowly varying phases, when |x| < < Xft , this

is more conveniently approximated as

U
T
(x,t) ^

2tt X^ft '-fe'
cos(f t+(j> , )

2C

X
2
ft

, o sin(ft+i|;,) Y . (18)

Thus the decay to steady state of u at a fixed point x is governed

by two factors:

-1/2
(a) A t decay, which can be interpreted as the effect due to

the dispersive nature of the process, and

(b) An additional possible decay, depending on the degree to which

the initial imbalances were distributed in the long wave numbers, since

|u |-~— , | = Aim
t-x» \X ft t-*»

(
u(s,0)e

i(-i(x/X
z
ft)s

ds

en

"J
u(s,0)ds , etc.



Similar analysis of v (x, t) and h
T
(x,t) yield

v
T
(x,t) «b

-i 1

2

2tt A ft

«-

a
X

A
2
ft

,

uf-f-,
X ft

cos(ft+ik ) /- ,

sin(ft+<J> )

(19)

and

h
T
(x,t) %

-i 1

2tt A ft

«- Hx
2 2Aft

rlu
x
2
ft •)l

sin(ft+<j> )
(ft

Hx
2 2

A
Z
f
Z
t

31
2

A ft

cos(f t+Ip ) (20)

Note the one difference in h_(x, t). Due to the presence of the (Ik)

term in h (k,t), the decay due to dispersion of h (x,t) proceeds as

-3/2 -1/2
t , rather than t

In summary then, we have shown here that the differential formulation

of the dispersive wave model (l)-(3) is most easily solved by Fourier

transforming to a system of ordinary differential equations. This solution

shows the model always tends to a steady state, whose difference from the

initial state is determined solely by the initial ageostrophic wind field.

The contributions from regions where the ageostrophic field is initally

non-zero die out in the steady state exponentially with distance. Lastly,

both the initial u and ageostrophic wind fields contribute to transients

-1/2 -3/2
that die out in time as t ' for the velocities, and t ' for the

free surface height.

10



3. Second Order Centered Finite Differences - The Quasi-Discrete Adjust-

ment

In this section we present an analytic treatment of the most common

difference scheme used for (l)-(3), and investigate the resulting effect

on the steady-state and transient behavior discussed above.

Consider the continuous, quasi-discrete, second order centered-leap-

frog formulation of (l)-(3)

— =fv(x,t)
2Ax
f-[h(x4-Ax,t) - h(x-Ax,t)]

av
3t

3h

= -f u(x,t)

H

8t 2Ax
[u(x+Ax,t) - u(x-Ax, t)]

>.(21)

If we Fourier Transform this system, noting

00

u(x+Ax,t)e dx
ikAx ^, .

e u(x,t),

we have:

"\

dt

dt

dh
dt

f v —~°- sin kAx h
Ax

a.
- f u

iH ^
-— sin kAx u
Ax

y .(22)

11



Observe this system is identical to (7)- (9) with k replaced by:

sin kAx
Ax (23)

Thus the solution to (22) becomes identical to (12), except k is re-

placed by a , and v by

v = 1 +
(fe)

4
2

1 A I
1 / 2

sin kAx (24)

Observe that the sinusoidal terms in (12) continue to represent tran-

sients when v is replaced by v and k by a . Thus the quasi discrete

case will tend toward a steady state whose transform is:

Vk)

v
s
00 v +

o
_J }J££ ft

1+A a '

v
o o

£ /, N £ H 1
h
s
(k) =h

o
+

f 7TT2
1+X a

lag % 'x,

la-;—

r

6
- h - v

f o o

> (25)

It is easily shown that

i££
ft - v -#")* h(x+Ax

t
Q)-h(x-Ax

l
O)

f o o if 2Ax
- v(x,0)[ . (26)

We shall let

i(x,t) = ,<x.t> _| MxH-Ax,t)-h(x-Ax,t)
1 ^.^i A

(27)

Thus if we can invert

ia

2 2
1+A a

and
1+A a

12



the steady state solution would be available by convolution. These are

inverted in Appendix 2, where we show

00 —6
|
x

|

/X °°

1 f 1 ikx j Ax e \ A
. , . N

7T~ I T~o e dx =
,

—— / 5(x-2nAx),
271

J l+X
2
o
2

/,2 1/A ,2
^

(Ax) nS3—CO

and

00 —6
|
x

|

/X °°

1
I

ia ikx ,, -Ax e \ A

x/ /0 - s . N

where

•-fc-^r) •
(28)

and <J < 1 with equality only for Ax = 0.

Thus we can arrive at

/°°
( —3

|
s

I

/

X

co

) 077772 ^v (x) = v(x,0) - Ax > 6(s-2nAx)l
>
d(x-s,0)ds

„< -6|2nAx|/A^
= v(x,0) \ <>e d(x-2nAx,0)(2Ax)>, (29)

2VA
2
+(Ax)

2
n=-~

and similarly

„ V-^ ( -e|(2n-l)Ax|/A
/N )

h
s
(x) = h(x,0) +

, y )e d(x-(2n-l)Ax,0)(2Ax)V .

2AVX
2
+(Ax)

2
f n=— (

(30)

13



Clearly (29)- (30) tend toward the corresponding integral forms (14) as

Ax * 0.

These expressions can now be examined versus (14) . The conclusions

that we can draw are that conversion of (l)-(3) to centered, second order,

quasi-discrete form results in:

(1) The measure of imbalance, the initial ageostrophic wind, is

converted to a finite differenced measure.

(2) Although at steady-state the effects of an initial disturbance

die off exponentially away from its original neighborhood, the rate of

decay is less than in the differential case. Furthermore, the rate of

decay decreases as (Ax/ A) increases.

(3) For the steady states, only the values of the ageostrophic wind

at alternating points are considered.

One interpretation of why the sums in (29)- (30) involves only alter-

nating points may be that, when elimination is tried on (21), one ends

with the equation for u involving only alternating points:

2

— u(x,t) = -f u(x,t) + —*sL_ i u (x+2Ax,t)-2u(x,t)+u(x-2Ax,t)> .

4(Ax)
2

»

t

I

A complete stationary phase analysis of the transient solution in the

quasi-discrete case:

u
T
(k,t) = u

Q
cos

f *

vt + *i ice ^r h > sin vt
v

(
° f

* f ;
*Vi io" 2 ^

v^dtjt) = — u sin vt + -7TX < v r* h > cos vt
T m o .,2)0 f o

W32)

%
h
T
(k,t) = iaH ^ . - iaHf ~ ikg— u sin vt rrr" < v 7^ K ?

J

14



is algebraically extremely complicated, although quite straightforward.

However, the salient features are relatively easily treated, and yield the

most significant results on the transient behavior. Therefore we only

present an outline of the details.

In computing the inversion integrals for (32), terms of the form

oo

f A(k)e
1(kx±0t)

dk

arise. The stationary phase points of these integrals arise as the

solutions of

. ,2,_ . . sin kAx
f A t cos kAx

4>'(k) = x ± ,

Ax— « . (33)

1 +
Ux")

2sin2kAx

This expression can be simplified by adding (-x) to both sides, squaring

2 2 2
and writing cos kAx as (1-sin kAx), to yield a quadratic in sin kAx.

The quadratic formula then yields as the points of stationary phase the

solutions of

s1Aax- aVt 2-xV/(AW-*y-4fVxW_
, (34)

2\ £ t

It is then easily shown that as t-*» , these solutions closely approximate:

2 • x
2

sin kAx =1 (35a)

Aft

and

2, 2 -2
. 2. .

• X (AX) A /or, \
sin kAx = —T22—2— ' (35b)

(A f t -x )

15



Clearly, for large t , (35b) yields stationary points near both

. ± x A"
1

k =

/2 f22 2
v\ f t -x

and

k- ±7-.
Ax

(All other solutions of (35b) are beyond the Nyquist cut-off.) The first

points are slight variants of the stationary points for the differential

case. The points near ±(tt/Ax) arise solely from the discretization, not

the physics of the problem. However, since these points give a behavior

of ((sin kAx)/Ax) identical to that of the stationary points near k = 0,

it is easily shown that they contribute computational transients with

precisely the same asymptotic behavior as the physical transients.

Note, before we consider the effect of terms introduced by the first

solution, (35a) , that a necessary and sufficient condition for the

stationary phase points to be on the real axis is that the quantity under

the radical sign in (34) be positive. After some manipulation, this

condition reduces to

l

X
l

( / 2~~2 )
> f < /(Ax) +X - Ax \ , t > 0.

It is not coincidental that the quantity on the right hand side of the

inequality is precisely the group propagation velocity for this quasi-

discrete case.

Referring again to the contribution from the stationary phase points

satisfying (35a), observe that we can easily show from (33) that

16



•TOO
2

± A ft

1+(t— ) sin kAx(kf

•,-(!+(— ) sin kAx) sin kAx + cos kAx<-

and so, near these stationary points

4»"(k) ^
±A ft Ax

/(Ax)
2
+X

2

Furthermore, note that near these same points

/ 2. ,2
x; /(Ax^+A

Ax
and a 'v

±1

Ax

Thus following again the argument of (3.7.5) in Miles [5], we see that the

points of stationary phase which arise from the solution to the first lead

to transients whose amplitudes, asymptotically, go as follows:

u cos vt ->

o

/(Ax) 2
+A

2

_2tt A ft Ax_

1/2

*(*2S.°)

f U— <v - log, £
o f o

sin vt->
Ax ll/2

_2TTA
2
ft/(Ax)

Z
+A

2
_

^°)|

f ^ . %— u sxn vt
v °

Ax
-il/2

2TTA
2
ft/(Ax)

2
+

»(*&•<>)

L. h - ^ ft i cos vt-
,,2 o f o

(Ax)
1 1/2|*

iaH ^ .—— u sin vt ->

oV

_2ttA ft

H
2
f

((Ax)
2
+A

2

)

3/2
^IS'

nl/2.

_2TTA
2
tAx/(Ax)

2
+A

2
_

»'*^.o
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iaHf j~ lag £ )

2 To f '
C0S " H

2
f 4x 1

1/2
|*
I a

°
o ^

2
>. //a n2,,2\3/2

_2ttA t ((Ax) +A J .

(**.o)|

(Note the evaluations are at ±(tt/2Ax) since, as t-*» , these are the

only solutions of (35a) that also satisfy the Nyquist limit.)

Viewing the above, it is now clear that the additional stationary

points which arise in this quasi-discrete case, and which tend toward

±(tt/2Ax) as t-*30 cause two noticeable effects on the transient behavior:

-1/2
(1) All of these transients now die off as t due to dispersion.

Comparing this to the results in the differential case, we see that these

transients are at least as persistent as the differential transients, and

for h(x,t) more so, since the differential transients in h(x,t) die

-3/2
out as t

(2) Two of these transients (the first and fifth) are somewhat ill

behaved as (Ax) * . Assuming u(x,0) has only finite power, then the

Ax term in the denominator should be controlled by tail-off of

u(± -rr— , 0) as (Ax) *-
, however, these terms are virtually certain to

be the slowest decaying for small Ax .

(We note that (35b) also causes stationary points to arise, that tend

toward ±(tt/Ax) as t-*» , however, the transients from these points do

not have an asymptotic dispersion decay that depends on (Ax) , and decay

at the same rate as the differential transients.) Although we shall not

show it analytically, we suspect the additional stationary points arise in

the quasi-discrete case from two causes, the "folding" in temporal

frequency that occurs at k = ±(tt/2Ax) , and the high frequency cut off

at k = ±(tt/Ax).

18



4. Conclusion

In this paper we have examined the effect of second order centered

spatial discretization on a dispersive wave equation. We have shown that

the methods of Fourier Transforms, and in particular the method of station-

ary phase, are quite useful in such investigations. In both the differen-

tial and quasi-discrete cases we have provided closed form expressions for

the steady-state solutions. These expressions show that the contribution

from any point in the initial state to the final state decays exponentially

with distance from that point in both cases, however the rate of decay is

decreased by discretization. The transients in both cases have been

analyzed by the method of stationary phase. This analysis shows that the

discretization introduces stationary phase points that have no counterpart

in the differential case, and, furthermore, these points contribute

transients that decay no faster than the differential ones, and in one

instance, the discrete transient will dominate the differential transient.
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Appendix 1

Consider the asymptotic behavior of

oo

2u
J

A(k)cos vt e
ikx

dk = i|)(x,t) , (1-1)

/ 22
where v - f/l+X k . This integral can be decomposed into

:x,t) -AJJ AC^e^l^dk + r A(k)e
i(

where

<J)
.. (k) = kx + vt, and <j>~(k) = kx - vt .

We can now determine the asymptotic behavior as t-*» for fixed x

of this term by using the method of stationary phase. Let k- and k~

be defined by

But

4
'l
(k

l
)

=
Cf,

2
(k

2
)

=
° '

<|>

1
(k) = x +

and so we find as the point of stationary phase for the first integral:

k.
xA

, (1-2)

which is on the path of integration, for t > x/Af . Similarly,
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(f)'(k 9
) = yields as the stationary point for the second integral,

,
x/A

k - -
, (1-3)

1 riA 2 2
/A f t -x

which is also on the path of integration for t > x/Af.

Observe that

1 /? 2 2

2

^(kj = -<|> (k ) = t A f t -x
z

,

l
v
~l' T

2
V 2' A

and that

,2. M 2 * 2 . 2 2n3/2
^(k

x
) = -^(k

2
) =

x ft
=

(A f ^X
}— >

A--'1+A k.

(Note [JCk^l « U*^(k
2
) |

= J0c1 ) . for Aft > |x|.)

Thus we have, by (3.7.5) on p. 51 of Miles [5]»

2

"*4fe) K)e "

1/0/ ,-r ! A 2^ 2 2 ,
TT

1/2 4
i[ — /A f t -x + -j

+ A(k
2

) e
X

. r
1 /2,2 2 2 fr

-i[ T /A f t -x + T 1

/ o o W 2 / •
r 1 Z2.2 2 2 tt

,

1 / 2tt Af
2
t
2 \ (,. .

i[yAft-x +-]
=

2
\[A

2
f
2
t
2
-x

2
]

3/2
y r 2

e

-i[i/ 2
f
2
t
2
-x

2
+ |]l

+ A(k
2
) e ) .

But note that if A(k) is the transform of a purely real valued

function,
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a(x)e
ikx

dk = A*(k) .

Thus, we can write:

ijj ^
2 2

Xf -XT

-,1/2

. ,,2,2 2 2.3/2
2tt(X f t -x )

|
Re A(k

2
)cos[ y A 2

f
2
t
2
-x

2
+ -|

+ Im A(k
2
)sin[ y A

2
f
2
t
2
-x

2
+ f ]| » (1-4)

where k~ is given by (1-3). Observe for Xft > > |x| , the lead term

acts as

_2ttX ft _

1/2

Similarly we can show

oo

a. r
2tt

J
A(k)sin vt e dk

'Xj

1£ 2 2
Xf t

-.1/2

2,(X
2
f
2
t
2
-x

2
)
3/2

{t, a /i \ • r 1 /2.2 2 2 tt .

Re A(k )sxn[ - Af t -x + j J

- Im a n \ r
1 7(2.2^2 2 tt

n (A(k
2
)cos[ y /X f t -x + -r ] > . (1-5)

Lastly, since the trigonetric functions in both expressions have the

same frequency, and since

/[Re A(k)]
2
+ [Im A(k)]

2
= |a(1c)

|
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we see

00

h J
A(k)cos vt e dx 'v

2 2
Af t

.1/2

„ ,, 2-2,2 2,3/2
2 it (A f t -x )

|A(k 9)|cos[Y A
2
f
2
t
2
-x

2
+ f,]"2 /,v-~ol A ?k"

^k
= | - tan

1
[Im A(k

2
)/Re A(k

2
>

]

= j - arg(A(k
2
))

and

oo

A(k)sin vt e dx ^
,,2 2
Af t

-a/2

,,2.2,2 2.3/2
2ir(A f t -x )

|A(k
9
)|sin[^ A 2

f
2
t
2
-x

2
+ •. ]
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Appendix 2

Consider

00

ikx
1 f e dx . sin k Ax ,_ ,,.

2^ 77T2~2 " Where °
=

Ax
(2~l)

J 1 + X a

The denominator,

*(k) = 1 + (jA Z
sin

2
k Ax (2-2)

is an entire function of k in the complex plane. The zeros of ^(k) are

solutions of:

sin kAx = + i — ,

or, letting k « k + i k.

sin(k Ax + i k.Ax)
r i

= sin(k Ax)cosh(k.Ax)+i cos(k Ax)sinh(k.Ax)
r i r 1

(?) •

Thus

sin(k Ax) cosh (k.Ax) =
r i

cos (k
r
Ax) sinh(k Ax) = ±(p) .

Thus

k .±g, k. - ± f sinh'Vf) . (2-3)
r Ax i Ax yA

J

as opposed to the poles at k = 0, k. = ± 1/A for the continuous case.
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Thus all zeros of the denominator lie off the real axis. In fact, they are

specifically distributed as shown:

a 9 <s 1) »

-3TT -2* -It TT AT

a » (fe (3) <b ®

Observe further that at its zeros,

*' (k) = 2 -— sin kAx cos kAx
Ax

= ±2
Ax

(i f ) coshlW1

^

|

= ±2i/x
2
+(Ax)

2
(2-4)

where the positive sign holds for k. > 0, and the negative one for k <0.

Thus the zeros of iKk) are simple poles of the integrand.

Consider (2-1) for x > 0. (Observe that (2-1) is an

even function of x.) To insure Re(ikx) <0 we will close the contour

in Im(k) > half plane. As long as we route the contour to avoid all

the poles there, the integrand is exponentially decaying as |k| * »
,

Im(k) > 0. Thus, we invoke Jordan's lemma to yield, for x >

h
J 7~fi

= 1
2-J

Residues I-

ikx

+ X
2
a
2

'

..E ikx

lm(k)>0 ^'(k)

k + ik.
r i
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2/x
2
+(Ax

x= E-H- +1 - slnhT))
(Ax) -°°

gx °° .n-rrx

2/x
2
+(Ax)

2 E-=T" e > e , (2-5)

where

If)
•i^

sinl

Observe (2-5) is not a convergent series in the usual sense. However,

viewed as a generalized function, it is a Fourier Series for the function,

periodic of period 2Ax , given in the interval -Ax < x < Ax by

°° .nrrx

S(x) m / c e where c =1.
Z—t

n n

Ax . mtr
~ Ax

But observe c = ~zr— I S(r)e dr = 1, all n.:n=2^ j
S < r >

-Ax

Thus

S(t) = 2Ax6(t),

and so its periodic extension becomes

£ 6(X-:S(x) = 2Ax 7 6(x-2nAx).

Thus
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-3 x

ikx— I r—-z dk = e / 6(x-2nAx)

.

V^ (Ax)

Note, if we view 3 as a function

3(x) = — sinh x ,

it is easily shown:

3(0) = 1 and 3' (x) < .

Thus < 3(x) <_ 1 with equality only at x = 0.

Since, for Imk > and large

ia Ax Ax

, , , 2 2 2 . ,2 x Imk
1+A a A sin kx a e

the above argument can be essentially repeated for

ia(k)e
h [ zrri dk - i E

lm(k>0
^' (k)

-Bx °° .niTX

2X\X
2
+(Ax)'

E <->
n

*
A \ 1

/ i\H Ax . _
e > (-1) e , x >

-
p lx| °° .mr,

, . N

-l a V^ X^ (3d-Ax)
e

2X\/X
2
+(Ax)

E
-3 x
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(2-7)

^ e
A Y^ 6(x-(2n-l)Ax) (2-8)

XVX
2
+(Ax)
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